Der Aufbau der Silizide M₅Si₃*.

Von

E. Parthé, B. Lux und H. Nowotny.

Aus dem I. Chemischen Laboratorium der Universität, dem Institut für Physikalische Chemie der Technischen Hochschule Wien und der Metallwerk Plansee G. m. b. H., Reutte-Tirol.

Mit 1 Abbildung.

(Eingelangt am 1. August 1955.)

Die noch unaufgeklärte Struktur der zweiten Modifikation von Nb₅Si₃ bzw. Ta₅Si₃ wurde bestimmt. Diese Phasen kristallisieren im Cr₅B₃-Typ, dessen Parameter für die 8 (h) Lage korrigiert wurde. Eine Übersicht über die im Mittelgebiet (33 bis 40 At.-% Si) auftretenden Silizide der Übergangsmetalle (4 a-, 5 a-, 6 a-Gruppe) wird gegeben und der genetische Zusammenhang der hier bestehenden Gitter erörtert.

Wie kürzlich mitgeteilt¹, ergab die Auswertung von Einkristallund Pulveraufnahmen an Nb₅Si₃- und Ta₅Si₃-Proben neben der schon bekannten tetragonalen Form (Raumgruppe D_{2d}^{11}) eine weitere tetragonale Kristallart². Die Diagramme lassen sich mit den schon angegebenen Gitterkonstanten für Nb₅Si₃ mit $a = 6,55_7$, $c = 11,86_0$ und Ta₅Si₃ mit $a = 6,50_3$ und $c = 11,84_9$ vollständig indizieren.

Die Auslöschungsgesetze: $(h \ k \ l)$ nur mit $h + k + l = 2 \ n$ vorhanden, sowie $(0 \ k \ l)$ nur mit $k = 2 \ n$ und $l = 2 \ n$ vorhanden, führen auf die

^{*} M bedeutet Metall.

¹ E. Parthé, H. Nowotny und H. Schmid, Mh. Chem. 86, 385 (1955).

² Die Herstellung der Ta₅Si₃-Proben erfolgte durch Tempern von Kaltpreßlingen aus Siliziumpulver (99,9% Si, Pechiney, Paris) und Tantalhydridpulver bei 1600°C in gereinigter Argonatmosphäre. Letzteres wurde durch Pulverisierung von Tantalblech, welches in Wasserstoffatmosphäre bei 1300°C versprödet wurde, dargestellt. Die Nb₅Si₃-Proben wurden aus demselben Siliziumpulver und Niobpulver (*C. Stark*, Goslar) in analoger Weise erhalten.

charakteristische Raumgruppe D_{4h}^{18} . Dasselbe Raumsystem liegt bei der von F. Bertaut und P. Blum³ ermittelten Struktur von Cr₅B₃ vor. Versuche, mit den von den genannten Autoren angegebenen Parametern eine zufriedenstellende Übereinstimmung zwischen berechneten und beobachteten Intensitäten zu erreichen, mißlangen. Da bei der Berechnung der Cr₅B₃-Struktur lediglich die Metallatompositionen festgelegt und die Boratome nach Maßgabe des freien Raumes verteilt worden waren, versuchten wir, die Parameter der den Borlagen entsprechenden Siliziumpunktlagen abzuändern. Mit den Punktlagen für Me: 4 (c) und 16 (l) mit x = 0.166 und z = 0.15 bzw. für Si: 4 (a) und 8 (b) mit x = 0.375statt 0,125 erreichten wir sehr gute Übereinstimmung zwischen beobachteten und berechneten Intensitäten bei Nb_5Si_3 (Tabelle 1) und Ta_5Si_3 (Tabelle 2). Durch die Veränderung des Parameters wird auch die starke Kompression der Si- und Ta-Atome bzw. B- und Cr-Atome in den Lagen mit z = 0, 0.15 und 0.85 beseitigt, da die Si-Atome bzw. B-Atome dann günstigere Lückenpositionen einnehmen.

Interessant ist die hier beobachtete Isotypie zwischen Siliziden und Boriden, welche z. B. auch bei Ta₂Si und Ta₂B angetroffen wurde.

Nach diesem Ergebnis bestehen im Gebiet von 33 bis 40 At.-% Si die in Tabelle 3 und Tabelle 4 angegebenen Silizidphasen. Der hexagonale D 8₈-Typ⁴, die von Aronsson bestimmte tetragonale Silizidstruktur⁵ (in der Folge T l genannt) und die neubestimmte zweite tetragonale Phase (ab nun T2 bezeichnet) wurden bei früheren Untersuchungen der Silizidsysteme meist gemeinsam aufgefunden. Ein sorgfältiges Studium der Verhältnisse^{6, 7, 8} bewies, daß sicher bei der 5 a- und 6 a-Gruppe der D8₈-Typ durch geringe Verunreinigungen, wie z. B. C. N, O, stabilisiert wird und demnach nicht im binären System Me-Si auftritt. Die zwei tetragonalen Phasen scheinen reine binäre Silizide zu sein und dürften Hoch- und Tieftemperaturmodifikationen darstellen^{1, 7}. Auf Grund von metallographischen Untersuchungen wurde diesen Phasen vorerst die Formel M₃Si₂ gegeben. In diesem Zusammenhang soll erwähnt werden, daß die von G. Brauer und W. Scheele⁹ angegebenen Phasen α -Nb₂Si und β -Nb₂Si nach neuerlichen Untersuchungen den T 2-Typ und den D 88-Typ aufweisen. Da zumindest der D 88-Typ einen größeren Homogenitätsbereich aufweist, können Analysen von

³ F. Bertaut und P. Blum, C. r. acad. sci., Paris 236, 1055 (1953).

⁴ Bezeichnung nach Strukturbericht.

⁵ B. Aronsson, Acta Chem. Scand. 9, 137 (1955).

⁶ L. Brewer und O. Krikorian, UCRL 25 44 Univ. of California (1954).

⁷ A. Knapton, Nature 175, 730 (1955).

⁸ H. Nowotny, E. Parthé, R. Kieffer und F. Benesovsky, Mh. Chem. 85, 255 (1954).

⁹ G. Brauer und W. Scheele in Anorg. Chem. II, Fiat-Ber. S. 103. Wiesbaden: Dietrichsche Verlagsbuchhandlung. 1948.

(h k l)	10 ³ · sin ² Ø berechnet	10 ³ • sin ² ⊘ beobachtet	Intensität berechnet	Intensität geschätzt	Bemerkungen
(001)	9.29		0) gesetzmäßig
(100)	30.42		0		ausgelöscht
(002)	37.4		5.2		,
(110)	60.85		0.0035		
(112)	98.25	97.6	14.3	SS	
(200)	121.0		5.06		
(004)	148.7	148.9	13.3	SS	
(202)	159.1	159.0	25.1	ms	
(211)	161.4	161.6	84.5	mst	
(114)	209.6	208.9	30.6	m	
(213)	235.7	235.0	127.9	sst	
(220)	243.2	242.5	19.71	s	
(204)	270.7	268.4	52.1	mst	
(222)	280.6	280.8	0.879	855	
(310)	304.2	304.6	67.0	mst	
(006)	334.5	333.9	10.8	ms	
(312)	357.1		1.12		
(215)	384 1		0		
(224)	391.9		0.846		
(116)	395.4		0,616	-	
(321)	404.3		0		
(314)	452.7		0.01		
(206)	456.2		2.34		
(200)	478 6		0		
(320)	1865		9.93		
(402)	5230)		1.25		
(402)	526.3	524,4	8.9	s	
(220)	520,5 J	547 1	7.85		
(226)	5777	576 5	6.04	228 228	
(220)	584.9	583.4	35.2	888	
(002)	595.0	593 7	4 69	999	
(413)	600 6	598.8	59.6	m	
(217)	6071)	000,0	44 4		
(420)	608.0	607,4	14.65	m	
(325)	627.0		0		
(404)	635.2)		14.72)		
(316)	638.5	637,8	39.6	m	
(422)	645.4		0.824		
(118)	655.9	·	1.41		
(334)	696.0	695.4	61.1	m	
(208)	716.7	711.3	9,45	SSS	
(415)	749.0		1.62		
(424)	756.7		2.13		
(431)	769.3		1.75		
(510)	790.5		1.86		
(406)	820.0	821.4	14,05	SSS	
(512)	827.9	828,0	21,4	SSS	
`	1	1		1	4

Tabelle	1.	Auswertung	und	Intensitätsberechnung	der	Niob-
		${f silizidphase}$	Nb_5	Si ₃ (T 2) (Cr-K _{α} -Strahlung).		

(h k l)	10 ³ · sin ² ∂ berechnet	10 ³ · sin ² ⊖ beobachtet	Intensität berechnet	Intensität geschätzt	Bemerkungen
(990)	690 A	0204	49.0	~~~	
(220)	000,2	000,4	42,9	55	
(433)	843, 6		2,7		
(327)	850,0		0		
(336)	882,0	881,9	75,0	m	
(521)	891,0		84,0		
(318)	899,0	899,3	110,0 }	mmst	
(219)	909,4 J		76,0 J		
(0010)	929,0	926,8	33,5	ss, d	
(514)	939,2)	040 7	388,0)		
(426)	942,5 Ì	940,7	90,2	mst—st	
(523)	965,6	963,6	559,0	sst	
(417)	972,0)	0704	502,0		
(440)	973,0 j	970,4	185,5	sst	

(Fortsetzung der Tabelle 1.)

Tabelle 2. Auswertung und Intensitätsberechnung der Tantalsilizidphase $Ta_5 Si_3$ (T 2) (Cr-K_{α}-Strahlung).

(h k l)	10 ³ · sin ² Ø berechnet	10 ³ •sin ² ⊖ beobachtet	Intensität berechnet	Intensität geschätzt	Bemerkungen
(h k l) (001) (100) (002) (110) (112) (200) (004) (202) (211) (114) (220) (204) (222) (204) (222) (204) (222) (310) (006) (312) (215) (224) (116) (321) (314) (206) (323) (400)	$\begin{array}{c} 10^{3} \cdot \sin^{2} \Theta \\ \text{berechnet} \\ \\ 9,31 \\ 30,94 \\ 37,23 \\ 61,9 \\ 99,08 \\ 123,7 \\ 149,0 \\ 160,9 \\ 164,0 \\ 210,85 \\ 238,5 \\ 247,5 \\ 272,7 \\ 284,7 \\ 309,4 \\ 335,0 \\ 346,7 \\ 387,5 \\ 396,5 \\ 396,5 \\ 396,5 \\ 396,85 \\ 411,8 \\ 458,5 \\ 458,7 \\ 486,3 \\ 495,0 \\ \end{array}$	10 ³ · sin ² Ø beobachtet 	Intensität berechnet 0 0,2,04 0,256 18,5 5,3 11,22 21,15 58,4 21,35 87,0 8,92 34,2 0,95 38,8 13,35 0,85 0 0,966 0,226 0 0,398 1,28 0 1,29	Intensität geschätzt 	Bemerkungen
(402) (411)	535,3	534,9	$\begin{array}{c}2,52\\9,16\end{array}$	m	

1	(Fortsetzuna	der	Tabelle	2)
J	T. OI COCCCUTOU	6001	T abbite	÷.	,

(h k l)	$10^3 \cdot \sin^2 \Theta$ berechnet	10 ³ • sin ³ Ø beobachtet	Intensität berechnet	Intensität gešchätzt	Bemerkungen
(330)	557,0	557,5	8,92	ms	
(226)	582,5	583.4	5,54	s—ms	
(332)	594.2)		32,1		
(008)	595,8	595,4	3,11	ms—m	
(413)	609,8 j	000 1	40,0		
(217)	610,7	609,1	34,6	st	
(420)	619,0	619,1	10,15	ms—m	
(325)	635,3		0		
(404)	644,0)	849.0	14,0)	- and at	
(316)	644,5)	042,8	31,3)	inst-st	
(422)	656,2	656 9	1,30)	a	
(118)	657,7 j	050,2	1,09∫	8	
(334)	706,0	705,0	49,2	\mathbf{mst}	
(208)	719,5	716,0	6,19	SS	
(415)	758,8		0,33	—	
(424)	768,0		0,83	—	
(431)	783,3	· · · · · · · · · · · · · · · · · · ·	0,037		
(510)	805,0		0,382		
(406)	830,0	830,7	1,43	ss, d	
(512)	842,2)	842.2	18,3)	m	
(228)	843,3 (012,0	30,6 f	111	
(433)	857,8		0,042		
(327)	858,5		0		
(336)	892,0	891,8	50,0	st	
(318)	905,3		68,4		
(521)	906,8	906,6	68,6	sst	
(219)	908,7		60,0)		
(0010)	931,2	928,6	30,8	ms	
(426)	954,0	952.4	114,8	st-ssst	
(514)	954,0 J	000.0	1299		
(523)	980,3	α ₁ 980,6	852	ssst, d	
(417)	982,3)	α2 982,5	755]		

Proben am metallreichen Ende des Einphasenbereiches zur Aufstellung der Formel Nb₂Si führen¹⁰.

Zufolge der ähnlichen Entstehungsbedingungen war der Gedanke naheliegend, in den drei Strukturen gemeinsame Bauelemente zu suchen. Wie schon *Bertaut* und *Blum*³ bemerken, liegt eine strukturelle Verwandtschaft zwischen dem C 16-Typ (Ta₂Si) und dem T 2-Typ (Ta₅Si₃) vor. Beide Strukturen gehören zum Typ der Polyflußspate. Nach *Hellner*¹¹ bezeichnet man als Polyflußspattypen solche Strukturen, die sich aus

 $^{^{10}}$ Wir danken Herrn Prof. G. Brauer für die Übersendung der Dissertation von W. Scheele.

¹¹ Nach *E. Hellner*, Second International Congress of Crystallography. Stockholm K 10 (1951).

		ſcm),25 utscht is	,61 uscht s	Si-Si	3,08
	D 8,9	— <i>C</i> 6/m), $x_1 = 0$ 4 (d) ta it Si au) $x_2 = 0$ 6 (g) ta nit C au	Ta-Si	2,555
la ₂ Si.		D^3_{6h}	$\begin{array}{c} 4 & \langle d \\ 6 & \langle g \\ \mathrm{Me} & \mathrm{in} \\ \mathrm{mm} \end{array}$	6 (g Si in m	Та-Та	2,607
bzw.]		em	166 15	,375	Si-Si	2,31
Ta ₅ Si ₃	T_2	,—I 4/m	x = 0, z = 0,	x = 0,	Ta-Si	2,58
ten bei		D_{4l}^{18}	4 (c) 16 (<i>l</i>)	4 8 (h	Ta-Ta	2,82
iprism		В	27, 074 25	$\begin{array}{l} x=0.17\\ z=0.75\end{array}$	Si-Si	2,52
en Ant	T 1	$\frac{T 1}{D_2^{11} d} - 1 42$	x = 0, y = 0, z = 0,		Ta-Si	2,58
ne in d			2 (a) 2 (b) 16 (j	4 (c) 8 (i)	Ta-Ta	2,52
talatoı		cm	166		Si-Si	2,51
ər Tan	0 16	4/m	<i>x</i> = 0,		Ta-Si	2,68
ände d		D_{4l}^{18}	8 (h)	4 (a)	Ta-Ta	2,90
Absti		Raum- gruppe	Metall- punktlagen	Silizium- punktlagen		Abstände der nächsten Nachbarn bei Ta_5Si_8 und Ta_2Si in $k X \cdot E$

Tabelle 3. Punktlagen der verschiedenen M₅Si₃-Phasen und Ta₂Si. Abstände der nächsten Nachbarn und

2,5

des CaF_2 (C1)- und C 16)-Typ zusammenese verwandten Strukls charakteristisch anen¹², daß ein Atom von omen umgeben ist, und alt von Würfeln (C 1näßigen Antiprismen n Würfeln bei C16-2) oder ähnlichen Korpern $(D 8_8)$.

1 zeigt, liegt das für charakteristische Cyp. ntiprisma sowohl beim h beim Ta₅Si₃ im T1-, verrt im $D 8_8$ -Typ vor. wähnten Verbindungen na aus Metallatomen de zum Vergleich das echende Antiflußspatgitter des Mg₂Si gezeichnet. Wir verstehen hierbei unter einem tetragonalen regelmäßigen Antiprisma ein Prisma, quadratische Deckfläche dessen gegenüber der Basisfläche verdreht ist. Die Eckpunkte dieses Antiprismas sind von Metallatomen besetzt, während sich im Mittelpunkt des Körpers ein Siliziumatom befindet. Der Verdrehungswinkel von Basis und Deckfläche beträgt bei C 16, T 1 und T 2 nur angenähert 45°. Demnach ist die Koordinationsfigur nur ein deformiertes archimedisches Antiprisma¹³, zumal nach

Schichtfolgen
des CuAl, (
setzen. Für di
turen kann al
gesehen werde
acht Fremdat
zwar in Gesta
Typ), regeln
(verschränkte
Two $T = T$
ordinationskö
TTT: A 1 1
wie Abb.
den CuAl ₂ -T
regelmäßige A
Ta ₂ Si als auch
T 2- und verz
Da bei den er
das Antiprisr
besteht, wurd
entsprechende
- 121 1 1032 21 12031 12 11 11 11 11 11

2,60 - 3,592.95 - 4.32 $2,37_{0}$ 3,42 82,80 $2,52_{5}$ 3,28 3,27 $3,17_{5}$ 2,903,26 2,51 fläche zu Grundfläche Abstand von Grund-Ta-Ta in der Grundfläche Grundfläche Ta-Ta von zu Grund-Abstand Abstand fläche atome in den Antiprismen stände der ler Tantal. und Ab-Abstände ler Anti-Grund-flächen prismen

¹² H. Rösler und K. Schubert, Z. Metallkunde 42, 395 (1951).

¹³ Nach K. Heinze, Genetische Stereometrie, S. 14-22, Leipzig, Teubner-Verlag, 1886, versteht man unter einem archimedischen Antiprisma ein Antiprisma, dessen Basis Deckfläche um 45° gegenund

Tabelle 3 die Abstände Ta-Ta in den Grundflächen nicht ganz übereinstimmen mit den nächsten Abständen Ta in Basisfläche und Ta in Deckfläche. Der T 1-Typ besteht aus zu Ta₂Si verwandten Zellen (in Abb. 1 nur diese Zelleneinheit dargestellt), die abwechselnd gegeneinander um die Höhe eines Antiprismas in der c-Richtung verschoben sind. Der T 2-Typ kann aufgefaßt werden als Kombination von 2 Ta₂Si-Einheiten und einer Einheit TaSi im CrB-Typ. Es schiebt

Abb. 1. Die Strukturen der Silizide Ta_5Si_3 im Vergleich mit dem Mg_2Si - und dem Ta_2Si ($CuAl_2$)-Gitter. Zur besseren Veranschaulichung wurden alle Strukturen in der c-Achse bzw. in der [112]-Achse gestreckt.

sich nach jedem Antiprisma eine Schicht von dreiseitigen Tantalprismen ein, die ganz vergleichbar mit CrB von Si-Zickzackketten durchsetzt wird. Beim $D \, 8_8$ -Typ ist das Antiprisma verzerrt und wird nur versetzt wiederholt. Dieser Koordinationskörper im $D \, 8_8$ -Gitter scheint dennoch sehr stabil zu sein. Unter der Annahme, daß die [112] der hexagonalen Zelle die Hauptachse dieses Körpers darstellt, ergibt sich für das Achsenverhältnis des $D \, 8_8$ -Typs $\frac{c}{a} = \frac{1/2}{2} - 0.70_7$. Wie bereits früher vermerkt¹⁴, ist aber das einheitliche Achsenverhältnis einander verdreht und dessen sechs seitliche Begrenzungsflächen aus gleichseitigen Dreiecken bestehen. ¹⁴ H. Nowotny und E. Parthé, Planseeber. 2, 34 (1954). $\frac{c}{a} = 0.68 - 0.70$ für den $D \, 8_8$ -Typ charakteristisch. Sowie der T 2-Typ einen Übergang darstellt zwischen Ta₂Si und hypothetischem TaSi im CrB-Typ, bildet der $D \, 8_8$ -Typ einen Übergangsfall zwischen Ta₂Si und hypothetischem TaSi im NiAs-Typ.

Metall- komponente		D 88			<i>T</i> 1			T 2		
		a in $kX \cdot E$	c in $kX \cdot E$		a in $kX \cdot E$	c in $kX \cdot E$		$a ext{ in } kX \cdot E$	c in $kX \cdot E$	
4 a- Gruppe	Ti Zr Hf	7,46 ₅ 7,87 ₀ ?	$5,16_2$ $5,54_7$?	15 16 17	?	?	21	?	?	21
5 a- Gruppe	V Nb Ta	$7,12_1$ $7,52_1$ $7,45_9$	$\begin{array}{r} 4,83_2 \\ 5,23_8 \\ 5,21_5 \end{array}$	18 18 19	$9,41_0$ 9,99 ₈ 9,86	$4,74_{7}$ $5,06_{7}$ 5,05	1 1 1	$6,55_{7}$ $6,50_{3}$	11,86 ₀ 11,84 ₉	1 1
6 a- Gruppe	Cr Mo W	6,97 ₉ 7,27 ₁ 7,18	$\begin{array}{r} 4,71_{6} \\ 4,99_{2} \\ 4,84 \end{array}$	20 18 20	9,16 9,64 9,54	4,64 4,98 4,93	9 9 9			

Tabelle	4.	Gitterkonstanten	der	verschiedenen	M ₅ Si ₃ -Phasen	•
---------	----	------------------	-----	---------------	--	---

Unser ganz besonderer Dank gilt den Herren Dr. R. Kieffer und Dr. F. Benesovsky von der Metallwerk Plansee GmbH., Reutte-Tirol, die uns die Mittel bereitgestellt haben und durch wertvolle Aussprachen wesentlich zum Gelingen der Arbeit beitrugen.

¹⁵ P. Pietrokowsky und P. Duwez, J. Metals 3, 772 (1951).

¹⁶ H. Schachner, H. Nowotny und R. Machenschalk, Mh. Chem. 84, 676 (1953).

¹⁷ R. Kieffer, F. Benesovsky und C. Konopicky, Ber. DKG 31, 223 (1954).

¹⁸ H. Schachner, E. Cerwenka und H. Nowotny, Mh. Chem. 85, 245 (1954).

¹⁹ H. Nowotny, H. Schachner, R. Kieffer und F. Benesovsky, Mh. Chem. 84, 1 (1953).

²⁰ E. Parthé, H. Schachner und H. Nowotny, Mh. Chem. 86, 182 (1955).

²¹ L. Brewer und O. Krikorian¹⁶ berichten über die Existenz der unaufgeklärten Phasen Zr_6Si_5 und Zr_4Si_3 , die im binären System Zr—Si neben dem D8₈-Typ auftreten sollen.

867